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ABSTRACT

Sampling from high-dimensional, multi-modal distributions remains a fundamen-
tal challenge across domains such as statistical Bayesian inference and physics-
based machine learning. In this paper, we propose Annealing Flow (AF), a contin-
uous normalizing flow-based approach designed to sample from high-dimensional
and multi-modal distributions. The key idea is to learn a continuous normaliz-
ing flow-based transport map, guided by annealing, to transition samples from an
easy-to-sample distribution to the target distribution, facilitating effective explo-
ration of modes in high-dimensional spaces. Unlike many existing methods, AF
training does not rely on samples from the target distribution. AF ensures effective
and balanced mode exploration, achieves linear complexity in sample size and di-
mensions, and circumvents inefficient mixing times. We demonstrate the superior
performance of AF compared to state-of-the-art methods through extensive exper-
iments on various challenging distributions and real-world datasets, particularly
in high-dimensional and multi-modal settings. We also highlight AF’s potential
for sampling the least favorable distributions.

1 INTRODUCTION

Sampling from high-dimensional and multi-modal distributions is crucial for various fields, includ-
ing physics-based machine learning like molecular dynamics (Miao et al., 2015; Salo-Ahen et al.,
2020), quantum physics (Carlson et al., 2015; Lynn et al., 2019), and lattice field theory (Jay & Neil,
2021; Lozanovski et al., 2020). With modern datasets, it also plays a key role in Bayesian areas,
including Bayesian modeling (Balandat et al., 2020; Kandasamy et al., 2018; Stephan et al., 2017)
with applications in areas like computational biology (Overstall et al., 2020; Stanton et al., 2022),
and Bayesian Neural Network sampling (Cobb & Jalaian, 2021; Izmailov et al., 2021).

MCMC and Neural Network Variants: Numerous MCMC methods have been developed over the
past 50 years, including Metropolis-Hastings (MH) and its variants (Choi, 2020; Cornish et al., 2019;
Griffin & Walker, 2013; Haario et al., 2001), Hamiltonian Monte Carlo (HMC) schemes (Bou-Rabee
& Sanz-Serna, 2017; Girolami & Calderhead, 2011; Hoffman et al., 2021; Li et al., 2015; Shahbaba
et al., 2014). HMC variants are still considered state-of-the-art methods. However, they require
exponentially many steps in the dimension for mixing, even with just two modes (Hackett et al.,
2021). More recently, Neural network (NN)-based sampling algorithms (Bonati et al., 2019; Egorov
et al., 2024; Gu & Sun, 2020; Hackett et al., 2021; Li et al., 2021; Wolniewicz et al., 2024) have
been developed to leverage NN expressiveness for improving MCMC, but they still inherit some
limitations like slow mixing and imbalanced mode exploration, particularly in high-dimensional
spaces.

Annealing Variants: Annealing methods (Gelfand et al., 1990; Neal, 2001; Sorkin, 1991;
Van Groenigen & Stein, 1998) are widely used to develop MCMC techniques like Parallel Tem-
pering (PT) and its variants (Chandra et al., 2019; Earl & Deem, 2005; Syed et al., 2022). In
annealing, sampling gradually shifts from an easy distribution to the target by lowering tempera-
ture. Annealed Importance Sampling (Neal, 2001) and its variants(Chehab et al., 2024; Karagian-
nis & Andrieu, 2013; Zhang et al., 2021) are developed for estimating normalizing constants with
low variance using MCMC samples from intermediate distributions. Recent Normalizing Flow and
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score-based annealing methods (Arbel et al., 2021; Doucet et al., 2022) optimize intermediate densi-
ties for lower-variance estimates, but still rely on MCMC for sampling. However, MCMC struggles
with slow mixing, local mode trapping, mode imbalance, and correlated samples issues. These lim-
itations are particularly pronounced in high-dimensional, multi-modal settings (Hackett et al., 2021;
Van Ravenzwaaij et al., 2018).

Particle Optimization Methods: Recently, particle-based optimization methods have emerged for
sampling, including Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016), and stochastic
approaches such as (Dai et al., 2016; Detommaso et al., 2018; Li et al., 2023; Liu, 2017; Maddison
et al., 2018; Nitanda & Suzuki, 2017; Pulido & van Leeuwen, 2019). However, many of these
methods rely on kernel computations, which scale polynomially with sample size, and are sensitive
to hyperparameters.

Normalizing Flows: Recently, Normalizing Flows (NFs) (Rezende & Mohamed, 2015) and Stochas-
tic NFs (Hagemann et al., 2022; Wu et al., 2020) have been explored for sampling. However, discrete
NFs often suffer from mode collapse, prompting works (Albergo & Vanden-Eijnden, 2023; Arbel
et al., 2021; Brofos et al., 2022; Cabezas et al., 2024; Gabrié et al., 2021; 2022; Matthews et al.,
2022) to address this with MCMC corrections, which depend on the quality of MCMC samples and
thus may struggle in high-dimensional settings. Several Continuous Normalizing Flows (CNFs) al-
gorithms (Hertrich & Gruhlke, 2024; Tian et al., 2024) are developed to address mode collapse, but
still rely on Monte Carlo procedures to correct bias, which are often sensitive to high-dimensional
densities. Besides, these methods may often fail with widely-separated modes, leaving some unex-
plored even after extensive training.

Challenges persist with multi-modal distributions in high-dimensional spaces. This paper introduces
Annealing Flow (AF), a novel sampling scheme that learns a continuous normalizing flow map from
an easy-to-sample distribution π0(x) to the target q(x), guided by annealing principles. Unlike
diffusion sampling (Bruna & Han, 2024; Chung et al., 2022; Shih et al., 2024; Zhou et al., 2023)
which requires pre-learning from a dataset of unknown distribution, AF training does not require
preliminary samples from the target q(x). AF is not based on MCMC, thus avoiding issues like slow
mixing, sample correlation, and mode imbalance. And unlike particle-based optimization methods,
AF scales linearly with sample size and dimensions. Once trained, one simply samples from π0(x),
and the learned transport map directly pushes these samples towards the target distribution.

2 PRELIMINARIES

Neural ODE and Continuous Normalizing Flow: A Neural ODE is a continuous model where the
trajectory of data is modeled as the solution of an ordinary differential equation (ODE). Formally,
in Rd, given an input x(t0) = x0 at time t0, the transformation to the output x(T ) is governed by:

dx(t)

dt
= v(x(t), t), (1)

where v(x(t), t) represents the velocity field, which is of the same dimension as x(t) and is param-
eterized by a neural network with input x(t) and t.

A Continuous Normalizing Flow (CNF) is a class of normalizing flows where the transformation of
a probability density from a base distribution p(x) (at t = 0) to a target distribution q(x) (at t = T )
is governed by a Neural ODE. The marginal density of x(t), denoted as ρ(x, t), evolves according
to the continuity equation derived from the ODE in Eq. (1). This continuity equation is written as:

∂tρ(x, t) +∇ · (ρ(x, t)v(x, t)) = 0, ρ(x, 0) = p(x), (2)

where the divergence ∇ · (ρv) accounts for the change in density as the flow evolves over time.

Dynamic Optimal Transport (OT): The Benamou-Brenier equation (Benamou & Brenier, 2000)
below provides the dynamic formulation of Optimal Transport T .

inf
ρ,v

∫ 1

0

Ex(t)∼ρ(·,t)∥v(x(t), t)∥2dt

s.t. ∂tρ+∇ · (ρv) = 0, ρ(·, 0) = p, ρ(·, 1) = q,

(3)
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The optimization problem seeks to find the optimal transport map that moves mass from the base
density p to the target density q, subject to the continuity equation (2) to ensure that ρ(·, t) evolves as
a valid probability density over time. Additionally, the constraint ρ(·, 1) = q ensures that the target
density is reached by the end of the time horizon. The time horizon is scaled to [0, 1].

3 ANNEALING FLOW MODEL

The annealing philosophy (Gelfand et al., 1990; Neal, 2001; Sorkin, 1991; Van Groenigen & Stein,
1998) refers to gradually transitioning an initial flattened distribution to the target distribution as the
temperature decreases. Building on this idea, we introduce Annealing Flow (AF), a sampling algo-
rithm that learns a continuous normalizing flow to gradually map an initial easy-to-sample density
π0(x) to the target density q(x) through a set of intermediate distributions.

We define q(x) = Zq̃(x) where q̃(x) represents the unnormalized target distribution given in explicit
form. Next, we define a sequence of intermediate distributions fk(x) that interpolate between an
easy-to-sample initial distribution π0(x) (e.g., a Gaussian) and the target q(x). These intermediate
distributions are formulated as:

fk(x) = π0(x)
1−βkq(x)βk = Zkf̃k(x), (4)

Here f̃k(x) = π0(x)
1−βk q̃(x)βk , and βk is an increasing sequence with β0 = 0 and βK = 1. This

formulation ensures that f̃0(x) = π0(x) and f̃K(x) = q̃(x). The sequence 0 = β0 < β1 < · · · <
βK = 1 controls the gradual transition between the two distributions.

The above construction aligns with the annealing philosophy. As βk increases, f̃k(x) gradually
sharpens toward the target q̃(x), starting from the initially flattened distribution around π0(x). These
annealed densities serve as a bridge, providing a gradual flow path from the easy-to-sample distri-
bution π0(x) to the target density q(x). Figure 1 provides an intuitive illustration of this process,
where π0(x) is a standard Gaussian, and q(x) is a Gaussian mixture model with six modes.

(a) β0 = 0

T0
[0, t1]

(b) β1 = 1/3

T1
[t1, t2]

(c) β2 = 2/3

T2
[t2, 1]

(d) β3 = 1

Figure 1: Illustration of the Annealing Flow Map, with a set of intermediate distributions from
π0(x) = N(0, I2) to q(x), a GMM with 6 modes.

3.1 OPTIMAL TRANSPORT MAP

We aim to learn a continuous optimal transport map between an easy-to-sample distribution π0(x)
and the target distribution q(x). Once trained, users simply sample {x(i)(0)}ni=1 ∼ π0(x), and
the transport map pushes them to {x(i)(1)}ni=1 ∼ q(x). The transport map T evolves the density
according to (2), which in turn drives the evolution of the sample x(t) following the ODE in (1):

T (x(t)) = x(0) +

∫ t

0

v(x(s), s)ds, t ∈ [0, 1]. (5)

We divide the time horizon [0, 1] of T into K intervals [tk−1, tk] for k = 1, 2, . . . ,K, where t0 =
0 and tK = 1. Guided by the annealing flow path defined in (4), the continuous flow map T
gradually transforms the density from f0(x) to f1(x) over [0, t1], and continues this process until
fK−1(x) is transformed into fK(x) = q(x) over [tK−1, tK ]. Figure 1 shows this progression
with two intermediate distributions. For clarity, we denote Tk(x) as the segment of the continuous
normalizing flow during [tk−1, tk], which pushes the density from fk−1(x) to fk(x).
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3.2 OBJECTIVE OF ANNEALING FLOW NET

Annealing Flow aims to learn each transport map Tk based on dynamic OT objective (3) over the
time horizon [tk−1, tk], where the velocity field vk(x(t), t) is learned using a neural network. The
terminal condition ρ(·, 1) = q in (3) can be relaxed by introducing a Kullback–Leibler (KL) diver-
gence term (see, for instance, Ruthotto et al. (2020)). Consequently, minimizing the objective (3) for
dynamic optimal transport Tk : fk−1(x)→ fk(x) can be reduced to solving the following problem:

Tk = argmin
T

{
KL(T#fk−1∥fk) + γ

∫ tk

tk−1

Ex(t)∼ρk(·,t)∥vk(x(t), t)∥2dt

}
, (6)

subject to ρk(x(t), t) and vk(x(t), t) evolving according to (2). Here, γ > 0 is a regulariza-
tion parameter, vk(x(t), t) denotes the velocity field during the k-th time interval [tk−1, tk], and
KL(T#fk−1∥fk) represents the KL divergence between the push-forward density T#fk−1 and the
target density fk. Additionally, the constraint (2) ensures that x(t) follows the ODE trajectory de-
fined by (1) during t ∈ [tk−1, tk], which is given by:

x(t) = x(tk−1) +

∫ t

tk−1

vk(x(s), s)ds, t ∈ [tk−1, tk]. (7)

We can rewrite f̃k(x) = ZeEk(x), where Ek(x) is the energy function, with the associated un-
normalized energy given by Ẽk(x) = − log f̃k. The following proposition shows that once we
have obtained samples from fk−1(x), the KL divergence in (6) can be computed exactly based on
vk(x(t), t) and Ẽk(x). Therefore, learning an optimal transport map Tk reduces to learning the
optimal vk(x(t), t). The proof is provided in Appendix A.1.

Proposition 1 (KL-Divergence Decomposition) Given the unnormalized density fk−1, the KL-
Divergence between T#fk−1 and fk is equivalent to:

KL(T#fk−1∥fk) = c+ Ex(tk−1)∼fk−1

[
Ẽk(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s) ds

]
, (8)

up to a constant c that is independent of vk(x(s), s).

Given x(tk−1) from fk−1(x), the value of x(tk) inside the energy function Ẽk can be calculated
as shown in equation (7). Additionally, according to the proposition below, the second term in the
objective (6) can be relaxed as a discretized sum. The proof is provided in Appendix A.1.

Proposition 2 (Wasserstein Distance Discretization) Let x(t) be particle trajectories driven by a
smooth velocity field vk(x(t), t) over the time interval [tk−1, tk], where hk = tk − tk−1. Assume
that vk(x, t) is Lipschitz continuous in both x and t. By dividing [tk−1, tk] into S equal mini-
intervals with grid points tk−1,s (where s = 0, 1, . . . , S and tk−1,0 = tk−1, tk−1,S = tk), we
have:∫ tk

tk−1

Ex(t)

[
∥vk(x(t), t)∥2

]
dt =

S

hk

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O(h2

k/S). (9)

As hk → 0 or S →∞, the error term O(h2
k/S) becomes negligible.

One can observe that the RHS of (9) can be interpreted as the discretized sum of the squared
Wasserstein-2 distance. The dynamic W2 regularization encourages smooth transitions from fk−1

to fk with minimal transport cost, promoting efficient mode exploration.

Next, by incorporating Propositions 1 and 2 into objective (6), the final objective becomes:

min
vk(·,t)

Ex(tk−1)∼fk−1

[
Ẽk(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s)ds+ α

S−1∑
s=0

∥x(tk−1,s+1)− x(tk−1,s)∥2
]
.

(10)
Here, α = γS/hk and vk(x(s), s) is learned by a neural network. We break the time interval
[tk−1, tk] into S mini-intervals, and x(tk−1,s+1) is computed as in equation (7).

After learning, connecting the Annealing Flow nets together yields a smooth flow map T : T1 →
T2 → · · · → TK , which transforms samples from π0(x) to the target q(x). Please see Section 4.2
for efficient sampling of Annealing Flow and its comparisons with other sampling methods.
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3.3 PROPERTIES OF LEARNED VELOCITY FIELD

The objective in (10) can be reformulated as shown below when hk = tk − tk−1 → 0. The proof is
provided in Appendix A.2.

Proposition 3 (Objective Reformulation) Denote hk = tk− tk−1, and let sk = ∇ log fk(x) denote
the score function of fk. As hk → 0 and with γ = 1

2 (so that α = S
2hk

), the objective in (10)
becomes equivalent to the following:

min
vk=vk(·,0)

Ex∼fk−1

[
−Tfkvk +

1

2
∥vk∥2

]
, Tfkvk := sk · vk +∇ · vk. (11)

Define L2(fk−1) =
{
v : Rd → Rd

∣∣ ∫
Rd ∥v(x)∥2fk−1(x) dx <∞

}
as the L2 space over

(Rd, fk−1(x)dx). We can then establish the following property, with proofs provided in Appendix
A.2:

Proposition 4 (Optimal Velocity Field as Score Difference) Suppose hk → 0 and γ = 1
2 . Let fk−1

and fk be continuously differentiable on Rd. Assume that ∇ · vk(x) exists for all x ∈ Rd, and
∇ · vk(x), sk−1 and sk belong to L2(fk−1). Assume that the components of vk are independent
and lim∥x∥→∞ fk−1(x)∥vk(x)∥2 = 0. Under these conditions, the minimizer of (10) is:

vk
∗ = sk − sk−1. (12)

Therefore, the infinitesimal optimal vk
∗ is equal to the difference between score function of the next

density, fk, and the current density, fk−1. This suggests that when the two intermediate densities are
sufficiently close, i.e., when the number of βk is large enough, the optimal velocity field equals the
difference between the score functions. By adding more intermediate densities, one can construct a
sufficiently smooth transport map T that exactly learns the mapping between each pair of densities.

Additionally, one can observe that when each f̃k(x) is set to the target q(x), i.e., when all βk are set
to 1, and the second term in the objective (6) is relaxed to static W2 regularization, the objective of
Annealing Flow becomes equivalent to Wasserstein gradient flow. This is detailed in Appendix B.

4 TRAINING AND SAMPLING OF ANNEALING FLOW NET

4.1 BLOCK-WISE TRAINING

Training of the k-th flow map in Annealing Flow begins once the (k − 1)-th block has completed
training. Given the samples {x(i)(tk−1)}ni=1 ∼ fk−1(x) produced after the (k−1)-th block, we can
replace Ex∼fk−1

with the empirical average. The divergence of the velocity field can be computed
either by brute force or via the Hutchinson trace estimator (Hutchinson, 1989; Xu et al., 2024a):

∇ · vk(x, t) ≈ Eϵ∼N(0,Id)

[
ϵT

vk(x+ σϵ, t)− vk(x, t)

σ

]
. (13)

This approximation becomes exact as σ → 0. Further details are provided in C.2. Additionally, we
apply the Runge-Kutta method for numerical integration, with details provided in C.3.

Our algorithm uses a block-wise training of the continuous normalizing flow map. Specifically, the
training of Annealing Flow is summarized in Algorithm 1. The block-wise training approach of
Annealing Flow significantly reduces memory and computational requirements, as only one neural
network is trained at a time, independent of the other flow networks.

4.2 EFFICIENT SAMPLING AND COMPARISONS WITH OTHER METHODS

Once the continuous normalizing flow map T is learned, the sampling process of the target q(x)
can be very efficient. Users can simply sample {x(i)(t0 = 0)}ni=1 from π0(x), and then directly
calculate {x(i)(tK = 1)}ni=1 ∼ q(x) through Annealing Flow nets:

x(i)(tk) = Tk(x(i)(tk−1)) = x(i)(tk−1) +

∫ tk

tk−1

vk(x
(i)(s), s)ds, k = 1, 2, · · · ,K. (14)

5
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Algorithm 1 Block-wise Training of Annealing Flow Net
Require: Unnormalized target density q̃(x); an easy-to-sample π0(x); {β1, β2, · · · , βK−1}; To-
tal number of blocks K.
1: Set β0 = 0 and βK = 1
2: For k = 1, 2, · · · ,K:
3: Set f̃k(x) = π0(x)

1−βk q̃(x)βk ;
4: Sample {x(i)(t0)}ni=1 from π0(x);
5: Compute the pushed samples x(i)(tk−1) from the trained (k − 1) blocks via (14);
6: Optimize vk(·, t) upon minimizing the objective function.

(Optional Refinement Blocks)
7: For k = K + 1,K + 2, · · · , L:
8: Set βk = 1 and optimize vk(·, t) following the procedures outlined above.

MCMC methods require long mixing times when sampling from complex distributions. In contrast,
Annealing Flow (AF) pushes samples directly from π0(x) through the learned transport map, en-
abling faster sampling, especially for large sample sizes. MCMC also generates correlated samples,
as each new sample depends on the previous one, reducing the effective sample size (ESS) and
efficiency. AF avoids this by producing independent samples, improving overall sample quality.

Additionally, MCMC struggles with multimodal distributions, as chains get trapped in local modes.
While methods like Parallel Tempering may attempt to explore all modes in low-dimensions, they do
not ensure proportional time across them, causing imbalanced sampling. In contrast, AF generates
balanced samples across modes in line with the target distribution, as illustrated in the below figure.

(a) AF (b) MH (c) HMC (d) PT

Figure 2: Comparison of different sampling methods for the density p(x) = 2
3N(−5, 1)+ 1

3N(5, 1)

NN-based MCMC algorithms still struggle with issues like slow mixing and correlated samples.
Particle-based methods like SVGD and MIED avoid burn-in period and produce less correlated
samples, but their reliance on kernel computations leads to polynomial scaling with sample size,
and they are sensitive to kernel hyperparameters. In contrast, AF computes samples independently
through (14), allowing the sampling process to scale linearly with both sample size and dimensions.

We comment that Annealing Flow indeed needs more expensive pre-training than MCMC, which,
however, can be done offline and only needs to be done once and then deployed for sampling.
Once trained, AF samplers are highly efficient, generating 10,000 samples in an average of 1.5
seconds in our experiments. In contrast, MCMC takes around 1 minute to sample 10,000, while
particle-based methods take significantly longer—over 20 minutes. AF also performs well on multi-
modal and high-dimensional densities, where other methods often struggle. Detailed comparisons
of algorithms, including the training and sampling times, are provided in D.1.

5 IMPORTANCE FLOW

Sampling from complex distributions is fundamental, which can benefit tasks like normalizing con-
stant estimation, Bayesian analysis, and various machine learning problems. Here, we briefly discuss
another aspect: using Annealing Flow to sample from the Least-Favorable-Distribution (LFD) and
obtain a low-variance Importance Sampling (IS) estimator, referred to as Importance Flow.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 SETTINGS

Suppose we want to estimate EX∼π0(x) [h(X)], which cannot be computed in closed form. A nat-
ural approach is to use Monte Carlo estimation by sampling {xi}ni=1 from π0(x). However, if xi

consistently falls in regions where h(x) has extreme values, the estimator may exhibit high variance.
For example, with π0(x) = N(0, Id) and h(x) = 1∥x∥≥6, almost no samples will satisfy ∥x∥ ≥ 6,
resulting in a zero estimate.

To address this situation, we can select an appropriate proposal distribution q(x) and rewrite the
expectation and MC estimator as:

Ex∼π0(x) [h(x)] = Ex∼q(x)

[
π0(x)

q(x)
h(x)

]
≈ 1

n

n∑
i=1

π0(xi)

q(xi)
h(xi), xi ∼ q(x). (15)

It is well-known that the theoretically optimal proposal for the importance sampler is: q∗(x) ∝
π0(x)|h(x)| := q̃∗(x). However, given the definition of q̃∗(x), it is often difficult to sample from,
especially when π0(x) or h(x) is complex. Consequently, people typically choose a distribution that
is similar in shape to the theoretically optimal proposal but easier to sample from.

Annealing Flow enables sampling from q∗(x), allowing the construction of an Importance Sampling
(IS) estimator. However, q∗(x) is only known up to the normalizing constant Z, where q∗(x) =
1
Z q̃(x) and Z = Ex∼π0(x)[h(x)] is our target. Therefore, assuming no knowledge on Z, a common
choice can be the Normalized IS Estimator: ÎN =

∑n
i=1

π0(xi)
q̃(xi)

h(xi)/
∑n

i=1
π0(xi)
q̃(xi)

. However, this
estimator is often biased, as can be seen from Jensen’s Inequality.

5.2 DENSITY RATIO ESTIMATION

Using samples from q∗(x) and those along the trajectory obtained via Annealing Flow, we can
train a neural network for Density Ratio Estimation (DRE) of π0(x)

q∗(x) . Inspired by works Choi et al.
(2022); Rhodes et al. (2020); Xu et al. (2023), we can train a continuous neural network r(x) =
rK(x; θK) ◦ rK−1(x; θK−1) ◦ · · · ◦ r1(x; θ1), where samples xi ∼ fK = q∗(x) are inputs and the
output is the density ratio π0(xi)

q∗(xi)
. Each rk(x; θk) is trained using the following loss:

Lk(θk) = Ex(tk−1)∼fk−1

[
log(1 + e−rk(xi(tk−1)))

]
+ Ex(tk)∼fk

[
log(1 + erk(xi(tk)))

]
.

After successful training, r∗k(x) = log fk−1(x)
fk(x)

, and thus r∗(x) =
∑K

k=1 r
∗
k(x) = log π0(x)

q∗(x) . Please
refer to Appendix A.3 and C.5 for the proof and further details. To obtain the optimal importance
sampling estimator, we can then directly use samples {xi}ni=1 ∼ q∗(x) from Annealing Flow and
apply (15) together with the DRE: 1

n

∑n
i=1 exp(r

∗(xi)) · h(xi). The estimator is unbiased and can
achieve zero variance theoretically.

6 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments comparing Annealing Flow (AF) with widely-
used MCMC algorithms, including Hamiltonian Monte Carlo (HMC) and Parallel Tempering (PT),
as well as other state-of-the-art techniques, including particle-based methods: Stein Variational Gra-
dient Descent (SVGD) (Liu & Wang, 2016) and Mollified Interaction Energy Descent (MIED) (Li
et al., 2023), alongside NN-based MCMC approaches: AI-Sampler (AIS) (Egorov et al., 2024).
The experimental details can be found in C.3.

We test these algorithms on challenging distributions, including Exp-Weighted Gaussian, Gaus-
sian Mixture Models (GMM), funnel distributions, and Truncated Normal with extreme radii across
varying dimensions. Maximum Mean Discrepancy (MMD) and Wasserstein Distance are used as
evaluation metrics, but only reported for the GMM due to the need for true samples. For other
experiments, we provide sample and density plots for easier comparison, as shown in Appendix D.

In addition, we compare our algorithm with others on Hierarchical Bayesian Logistic Regression
across a range of datasets. We also report the preliminary results of the Importance Flow (discussed
in Section 5) for estimating Ex∼N(0,I)

[
1∥x∥≥c

]
with varying c and dimensions.
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Gaussian Mixture Models (GMM): Figure 3 presents the sampling results of different methods on a
2D GMM, where the modes are distributed across circles with varying radii. We also experimented
on a GMM with modes aligned on the vertices of a cube in higher dimensions, with the number of
modes ranging from 8 to 64. Evaluation metrics and additional figures for these experiments are
provided in Table 4 in Appendix D.

(a) True (b) AF (c) HMC (d) PT (e) SVGD (f) MIED (g) AIS

Figure 3: Sampling methods for Gaussian Mixture Models (GMM) with 8 and 10 modes distributed on circles
with radii r = 10, 12. The acronyms of the methods are listed in the first paragraph of this section.

Truncated Normal Distribution: Figure 4 shows the sampling results for q̃(x) = 1∥x∥≥cN(0, Id),
based on 5000 samples for each method. SVGD, MIED, and AI-Sampler are designed for
continuous densities. SVGD and MIED specifically require the gradient of the log-probability,
given by ∇ log

(
1∥x∥≥cN(0, Id)

)
in this experiment. Despite relaxing the indicator function to

1/(1+ exp(−k(∥x∥− c))) for large k, the algorithms failed to yield meaningful results (See Figure
8 in Appendix D for the results of their algorithms). Therefore, we compare AF with MH, HMC,
and PT. We also tested our algorithm on 10D space. Additional figures are given in Appendix D.

(a) True (b) AF (c) MH (d) HMC (e) PT

Figure 4: Sampling methods for truncated normal distributions with radii c = 6 and c = 8 in 2D
space for the first two rows. The last row presents sampling results in 5D with a radius of 8, projected
onto a 3D space.

Funnel Distribution: A well-known challenging distribution for sampling is the funnel distribution,
defined as:

P (x1, x2, . . . , xd) ∝ N (x1 | 0, σ2)

d−1∏
i=2

N (xi | 0, exp (x1)),

8
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In this setup, xi, i = 2, · · · , d has a variance that depends exponentially on x1, forming a funnel-
shaped distribution. Sampling is challenging due to this exponential dependence, causing extreme
concentration for negative x1 and wide dispersion for positive x1, making exploration difficult,
especially in high dimensions.

We tested our Annealing Flow together with other algorithms on d = 5 case. Here, we present the
sampling result projected onto a 3D space for a funnel distribution in a 5D space, with σ2 = 0.81:

(a) AF (b) HMC (c) PT (d) SVGD (e) MIED (f) AIS

Figure 5: Sampling Methods for Funnel Distribution in d = 5, projected onto d = 3.

Exp-Weighted Gaussian with an Extreme Number of Modes in High-Dimensional Spaces:

We tested each algorithm on sampling from an extreme distribution:

p(x1, x2, · · · , x10) ∝ e10
∑10

i=1 |xi|− 1
2∥x∥

2

,

which has 210 = 1024 modes arranged at the vertices of a 10-D cube. The L2-distance between
two horizontally or vertically adjacent modes is 20, while the diagonal modes are separated by up to√
10 · 202 ≈ 63.25. We also tested on the extreme distribution:

p(x1, x2, · · · , x50) ∝ e10
∑10

i=1 |xi|+10
∑50

i=11 xi− 1
2∥x∥

2

,

which has 210 = 1024 modes arranged at the vertices of a 50-D space.

Given the challenge of visualizing results in high-dimensional space, we present in Figure 6 the
projected results of the 50-D samples onto the first three dimensions. For comparisons in 10-D
space, please refer to Figure 12 in Appendix D. The performance of SVGD, MIED, and AIS is
inferior to AF, as compared in Figures 13 and 14 in Appendix D.

(a) AF (b) HMC (c) PT (d) SVGD (e) MIED (f) AIS

Figure 6: Sampling Methods for an Exp-Weighted Gaussian Distribution with 1024 modes in Di-
mension d = 50, projected onto a d = 3 Space.

Table 1: The number of modes successfully explored by each algorithm across various dimensions.

d = 2 d = 5 d = 10 d = 50
True 4 32 1024 1024
AF 4 32 1024 1024

HMC 3.1 24.3 213.5 < 10
PT 3.4 25.2 233.7 < 10

d = 2 d = 5 d = 10 d = 50
SVGD 3.9 28.5 957.3 916.4
MIED 3.8 28.0 923.4 890.6
AIS 3.8 28.3 707.4 125.6

Table 1 presents the number of modes successfully explored by different algorithms across varying
dimensions. Each algorithm was run 10 times, sampling 10,000 points per run, and the average
number of modes explored by each algorithm was then calculated.
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Bayesian Logistic Regression: We use the same Bayesian logistic regression setting as in Liu &
Wang (2016), where a hierarchical structure is assigned to the model parameters. The weights
β follow a Gaussian prior p0(β|α) = N(β; 0, α−1), and α follows a Gamma prior p0(α) =
Gamma(α; 1, 0.01). Sampling is performed on the posterior p(β, α|D), where D = {xi, yi}ni=1.
The performance comparisons are shown in Table 2. Detailed settings are given in C.4.

Table 2: Bayesian Logistic Regression: comparison of different algorithms across datasets. In the
table · ± ·/· represents Accuracy(%)±std(%)/log-posterior

Dataset AF SVGD MIED AI-Sampler
Diabetes (d = 8) 76.30± 2.12/− 0.496 76.10± 2.5/− 0.502 75.80± 2.32/− 0.503 76.30± 2.18/−0.493
Breast Cancer (d = 10) 97.85± 1.12/− 0.017 98.83± 3.10/−0.008 98.89± 2.12/−0.008 97.83± 2.80/− 0.019
Heart (d = 13) 88.46± 2.73/−0.316 79.36± 3.78/− 0.588 86.70± 2.24/− 0.321 84.23± 2.54/− 0.458
Australian (d = 14) 86.59± 1.20/−0.361 84.56± 2.87/− 0.365 85.17± 1.34/− 0.369 84.62± 2.30/− 0.375
Ijcnn1 (d = 22) 91.96± 0.05/−0.195 89.44± 0.34/− 0.209 91.84± 0.15/−0.198 88.32± 0.25/− 0.334
Svmguide3 (d = 22) 80.04± 0.70/− 0.472 78.89± 1.20/− 0.479 80.12± 1.04/−0.472 80.12± 0.98/−0.468
German (d = 24) 78.04± 1.70/−0.473 76.43± 1.70/− 0.483 77.21± 1.80/− 0.479 76.89± 1.84/− 0.484

Importance Flow: Table 3 reports the preliminary results of the importance flow (discussed in Sec-
tion 5) for estimating Ex∼N(0,I)

[
1∥x∥≥c

]
with varying radii c and dimensions. This estimation

uses samples from the experiment on the Truncated Normal Distribution, and thus the results for
SVGD, MIED, and AIS cannot be reported. Please refer to C.5 for detailed experimental settings.
Additionally, we discussed a possible extension of the Importance Flow framework in D.2.

Table 3: Comparison of Results for different radii (c) and dimensions (d). The value in parentheses
indicates the standard deviation.

Methods Radius d = 2 d = 3 d = 4 d = 5

True Probability c = 4 3.35e-04 1.13e-03 3.02e-03 6.84e-03
c = 6 1.52e-08 7.49e-08 2.89e-07 9.50e-07

Importance Flow c = 4 4.04e-04(1.0e-04) 1.30e-03(2.3e-04) 3.36e-03(4.23e-04) 7.86e-03(8.21e-04)
c = 6 9.81e-08(4.02e-07) 1.51e-07(1.23e-07) 2.13e-07(8.71e-08) 2.38e-07(3.48e-06)

DRE with HMC Samples c = 4 7.56e-04(4.99e-04) 2.52e-03(6.33e-04) 8.97e-03(9.05e-04) 1.12e-02(1.55e-03)
c = 6 4.35e-07(7.21e-07) 9.01e-07(2.79e-06) 1.82e-07(2.89e-06) 2.31e-06(6.21e-06)

DRE with PT Samples c = 4 6.79e-04(3.58e-04) 2.38e-03(5.40e-04) 5.78e-03(7.98e-03) 9.94e-03(1.13e-03)
c = 6 5.37e-07(9.56e-07) 8.78e-07(2.32e-06) 9.23e-07(2.51e-06) 1.98e-06(7.73e-06)

Naı̈ve MC c = 4 2.75e-04(6.0e-04) 1.18e-03(1.1e-03) 2.71e-03(1.7e-03) 7.94e-03(2.6e-03)
c = 6 0 0 0 0

7 DISCUSSIONS

In this paper, we have proposed the Annealing Flow (AF) framework, a novel and flexible approach
for sampling from high-dimensional and multi-modal distributions. AF offers several advantages
over existing methods, as thoroughly discussed in D.1. Additionally, we have also compared the
training and sampling times in D.1. Extensive experiments demonstrate that AF performs well
across a variety of challenging distributions and real-world datasets.

The Annealing Flow framework presented in this paper is highly flexible and accommodates various
challenging distributions. The concept of ‘Annealing’ in sampling can be interpreted as gradually
transitioning from an easy-to-sample distribution to the target distribution. Therefore, each inter-
mediate distribution fk can be defined flexibly without adhering to (4), as long as the transitions
between fk−1 and fk are smooth and the sequence converges to the target q(x). If the density modes
are close enough, all f̃k(x) can simply be set to the target density q(x), making the Annealing Flow
objective equivalent to the Wasserstein gradient flow, as discussed in Appendix B. Additionally,
we believe that by adding more intermediate distributions, one can obtain intermediate samples at
various time points to construct a low-variance estimator for the normalizing constant. Finally, the
importance flow discussed in Section 5 may be extended to a distribution-free model, allowing one
to learn an importance flow from a dataset for sampling its Least-Favorable Distribution (LFD) with
minimal variance, as further detailed in D.2.
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A PROOFS

A.1 PROOFS IN SECTION 3.2

Proposition 1. (KL-Divergence Decomposition) Given the unnormalized density fk−1, the KL-
Divergence between T#fk−1 and fk is equivalent to:

KL(T#fk−1∥fk) = c+ Ex∼fk−1

[
Ẽk(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s) ds

]
,

up to a constant c that is independent of vk(x(s), s).

Proof:

Let ρ(x, t) denote the density evolution under the transport map T , as defined in (2). By the con-
straint (2) in the transport map objective (3), we have T#fk−1(x) = ρ(x, tk). The expression for
KL-divergence is given by:

KL(T#fk−1 ∥ fk) = Ex∼ρ(x,tk)

[
log
T#fk−1(x)

fk(x)

]
= Ex∼ρ(x,tk) [log T#fk−1(x)− log fk(x)] .

Now, recall that − log f̃k(x) = Ẽk(x), so we substitute:

KL(T#fk−1 ∥ fk) = Ex∼ρ(x,tk)

[
log T#fk−1(x) + Ẽk(x)

]
− logZk

= Ex∼ρ(x,tk−1)

[
log T#fk−1(x(tk)) + Ẽk(x(tk))

]
− logZk,

where the second equality holds under the constraints (1) and (2). The density ρ evolves according
to (2), and equivalently, the particles x(t) evolve according to (1).

Next, to compute log T#fk−1(x(tk)), we use the fact that the dynamics of the pushforward density
ρ are governed by the velocity field vk(x(s), s):

d

ds
log ρ(x(s), s) =

∇ρ(x(s), s) · ∂sx(s) + ∂sρ(x(s), s)

ρ(x(s), s)

=
∇ρ · vk −∇ · (ρvk)

ρ

∣∣∣
(x(s),s)

(by (1) and (2))

=
∇ρ · vk − (∇ρ · vk + ρ∇ · vk)

ρ

∣∣∣
(x(s),s)

= −∇ · vk(x(s), s).

Integrating this equation over the interval s ∈ [tk−1, tk], we find:

log T#fk−1(x(tk)) = log ρ(x(tk), tk) = log ρ(x(tk−1), tk−1)−
∫ tk

tk−1

∇ · vk(x(s), s)ds.

We now substitute this result back into the KL-divergence expression:

KL(T#fk−1 ∥ fk) = Ex∼ρ(x,tk−1)

[
log ρ(x(tk−1), tk−1)−

∫ tk

tk−1

∇ · vk(x(s), s)ds+ Ẽk(x(tk))

]
−logZk.

Note that Ex∼ρ(x(tk−1),tk−1) [log ρ(x(tk−1), tk−1)] is independent of vk(x(s), s) and thus acts as
a constant term, along with − logZk, which we now denote as c. After successfully training the
previous velocity fields, we have ρ(x, tk−1) = fk−1(x). Therefore, the relevant terms for the KL-
divergence are:

KL(T#fk−1 ∥ fk) = c+ Ex∼fk−1

[
Ẽk(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s)ds

]
.
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Proposition 2. (Wasserstein Distance Discretization) Let x(t) be particle trajectories driven by a
smooth velocity field vk(x(t), t) over the time interval [tk−1, tk], where hk = tk−tk−1. Assume that
vk(x, t) is Lipschitz continuous in both x and t. By dividing [tk−1, tk] into S equal mini-intervals
with grid points tk−1,s (where s = 0, 1, . . . , S and tk−1,0 = tk−1, tk−1,S = tk), the following
approximation holds:∫ tk

tk−1

Ex(t)

[
∥vk(x(t), t)∥2

]
dt =

S

hk

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O

(
h2
k/S

)
.

As hk → 0 or S →∞, the error term O
(
h2
k/S

)
becomes negligible.

Proof:

Consider particle trajectories x(t) driven by a sufficiently smooth velocity field vk(x(t), t) over
the time interval [tk−1, tk], where hk = tk − tk−1. We divide this interval into S equal mini-
intervals of length δt = hk

S , resulting in grid points tk−1,s = tk−1 + sδt for s = 0, 1, . . . , S, where
δt = tk−tk−1

S .

Within each mini-interval [tk−1,s, tk−1,s+1], we perform a Taylor expansion of x(t) around tk−1,s:

x(tk−1,s+1) = x(tk−1,s) + vk(x(tk−1,s), tk−1,s)δt+
1

2

dvk

dt
δt2 +O(δt3),

where dvk

dt denotes the total derivative of vk with respect to time.

The squared displacement over the mini-interval [tk−1,s, tk−1,s+1] is given by:

∥x(tk−1,s+1)− x(tk−1,s)∥2 =

∥∥∥∥vk(x(tk−1,s), tk−1,s)δt+
1

2

dvk

dt
δt2 +O(δt3)

∥∥∥∥2
= ∥vk(x(tk−1,s), tk−1,s)∥2δt2 +O(δt3),

as we assume that vk is L-Lipschitz continuous and it follows that |dvk

dt | ≤ L. The higher-order
terms O(δt3) become negligible as δt→ 0.

Summing the expected squared displacements over all mini-intervals, we obtain:

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
= δt2

S−1∑
s=0

E
[
∥vk(x(tk−1,s), tk−1,s)∥2

]
+O

(
S · δt3

)
.

Now, we examine the L.H.S. of Proposition 2 by approximating the integral of the expected squared
velocity using a Riemann sum:∫ tk

tk−1

Ex(t)

[
∥vk(x(t), t)∥2

]
dt = δt

S−1∑
s=0

E
[
∥vk(x(tk−1,s), tk−1,s)∥2

]
+O

(
S · δt2

)
= δt

[
1

δt2

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O(S · δt)

]
+O(S · δt2)

=
1

δt

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O

(
S · δt2

)
,

where the Riemann sum error term O(S · δt2) arises from a well-known result (for instance, see
Chapter 1 of Axler (2020)), given the assumption that vk is L−Lipschitz continuous.
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A.2 PROOFS IN SECTION 3.3

Proposition 3. (Objective Reformulation) Denote hk = tk− tk−1, and let sk = ∇ log fk(x) denote
the score function of fk. As hk → 0 and with γ = 1

2 (so that α = S
2hk

), the objective in (10)
becomes equivalent to the following:

min
vk=vk(·,0)

Ex∼fk−1

[
−Tfkvk +

1

2
∥vk∥2

]
, Tfkvk := sk · vk +∇ · vk.

Proof:

From the Neural ODE (1) and using Taylor’s expansion, we obtain:

x(tk)− x(tk−1) =

∫ tk

tk−1

vk(x(s), s)ds = hkvk(x(tk−1), tk−1) +O(h2
k)

Next, by performing Taylor expansion of Ẽk(x(tk)) around tk−1:

Ẽk(x(tk)) = Ẽk(x(tk−1)) + (x(tk)− x(tk−1))∇Ẽk(x(tk−1)) +O(h2
k)

= Ẽk(x(tk−1)) + hk∇Ẽk(x(tk−1)) · vk(x(tk−1), tk−1) +O(h2
k)

Besides, we also have that:∫ tk

tk−1

∇ · vk(x(s), s)ds = hk∇ · vk(x(tk−1), tk−1) +O(h2
k).

As hk → 0, we no longer need to divide the time interval, i.e., S = 1. By defining the score function
as sk = ∇ log fk = −∇Ẽk, the objective function (10) can be then approximated as:

Ex∼fk−1

[
Ẽk(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s) ds+
1

2hk
∥x(tk)− x(tk−1)∥2

]

= Ex∼fk−1

[(
Ẽk(x(tk−1))− hksk(x(tk−1)) · vk(x(tk−1), tk−1) +O(h2

k)
)

−
(
hk∇ · vk(x(tk−1), tk−1) +O(h2

k)
)
+

1

2hk
∥hkvk(x(tk−1)) +O(h2

k)∥2
]

= Ex∼fk−1

[
Ẽk(x) + hk

(
−sk(x) · vk(x, tk−1)−∇ · vk(x, tk−1) +

1

2
∥vk(x, tk−1)∥2

)
+O(h2

k)

]
Since Ex(tk−1)∼fk−1

[Ẽk(x(tk−1))] is independent of vk(x, t), as hk → 0, the minimization of the
leading term is equivalent to:

min
vk=vk(·,0)

Ex∼fk−1

[
−Tfkvk +

1

2
∥vk∥2

]
, Tfkvk := sk · vk +∇ · vk.

Proposition 4: (Optimal Velocity Field as Score Difference) Suppose hk → 0 and γ = 1
2 . Let

fk−1 and fk be continuously differentiable on Rd. Assume that∇ · vk(x) exists for all x ∈ Rd, and
∇ · vk(x), sk−1 and sk belong to L2(fk−1). Assume that the components of vk are independent
and lim∥x∥→∞ fk−1(x)∥vk(x)∥2 = 0. Under these conditions, the minimizer of (10) is:

vk
∗ = sk − sk−1.

Proof:

Under the assumptions that hk → 0 and γ = 1
2 , we begin by considering the equivalent minimization

objective derived in Proposition 3:

min
vk

J(vk) := min
vk

Ex∼fk−1

[
−Tfkvk +

1

2
∥vk∥2

]
, Tfkvk := sk · vk +∇ · vk.
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Expanding the objective functional, we have:

Ex∼fk−1

[
−sk · vk −∇ · vk +

1

2
∥vk∥2

]
=

∫
Rd

fk−1(x)

(
−sk(x) · vk(x)−∇ · vk(x) +

1

2
∥vk(x)∥2

)
dx.

Define Br = {x ∈ Rd : ∥x∥ ≤ r}, and let ∂Br denote the boundary of Br, which is the sphere of
radius r. Under the assumption that lim∥x∥→∞ fk−1(x)∥vk(x)∥2 = 0, we have the following:

|
∫
Rd

∇ · (fk−1 vk) dx| = lim
r→∞

|
∫
Br

∇ · (fk−1vk) dx|

= lim
r→∞

|
∫
∂{x∈Rd:∥x∥<r}

fk−1(x)vk(x) · n(x)dS(x)|

≤ lim
r→∞

∫
∂{x∈Rd:∥x∥<r}

fk−1∥vk∥2∥nk∥2dS(x)

= lim
r→∞

∫
∂{x∈Rd:∥x∥<r}

fk−1∥vk∥2dS(x)

= 0

Therefore,
∫
Rd ∇ · (fk−1 vk) dx = 0. Next, we further expand the divergence theorem:

0 =

∫
Rd

∇ · (fk−1(x)vk(x))dx

=

∫
Rd

fk−1(x)∇ · vk(x)dx+

∫
Rd

vk(x) · ∇fk−1(x)dx

=

∫
Rd

fk−1(x)∇ · vk(x)dx+

∫
Rd

vk(x) · sk−1(x) fk−1(x) dx

Substitute the result back into the objective functional, we have:

Ex∼fk−1

[
−sk · vk −∇ · vk +

1

2
∥vk∥2

]
=

∫
Rd

fk−1(x)

(
−sk(x) · vk(x)−∇ · vk(x) +

1

2
∥vk(x)∥2

)
dx

=

∫
Rd

fk−1(x)

(
(sk−1(x)− sk(x)) · vk(x) +

1

2
∥vk(x)∥2

)
dx.

The integrand does not involve ∇vk,j(x), j = 1, · · · d and higher-order derivatives. Assuming
the components vk,j , j = 1, · · · , d of vk are independent, we can take the functional derivative
component-wise and set them to zero:

δJ

δvk
= fk−1 (vk + (sk−1 − sk)) = 0,

Since fk−1 > 0 for all x, this implies:

vk
∗ = sk − sk−1.

A.3 PROOFS IN SECTION 5.2

Density Ratio Estimation (DRE) By optimizing the following loss function:

Lk(θk) = Ex(tk−1)∼fk−1

[
log(1 + e−rk(xi(tk−1)))

]
+ Ex(tk)∼fk

[
log(1 + erk(xi(tk)))

]
,

the model learns an optimal r∗(x; θk) = log fk−1(x)
fk(x)

.

Proof:

Express the loss function as integrals over x:

Lk =

∫
fk−1(x) log

(
1 + e−rk(x)

)
dx+

∫
fk(x) log

(
1 + erk(x)

)
dx.
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Compute the functional derivative of Lk with respect to rk:

δLk(rk)

δrk
= −fk−1(x) ·

e−rk(x)

1 + e−rk(x)
+ fk(x) ·

erk(x)

1 + erk(x)
.

Next, we can set the derivative δlk/δrk(x) to zero to find the minimizer r∗k(x):

r∗k(x) = ln

(
fk−1(x)

fk(x)

)
.

Therefore, by concatenating each r∗k(x), we obtain

r∗(x) =

K∑
k=1

r∗k(x) = log
fK−1(x)

fK(x)
· fK−2(x)

fK−1(x)
· · · · · f0(x)

f1(x)
= log

f0(x)

fK(x)
= log

π0(x)

q∗(x)
,

the log density ratio between π0(x) and q∗(x).

B EQUIVALENCE TO WASSERSTEIN GRADIENT FLOW WHEN β = 1

In this section, we demonstrate the equivalence of Annealing Flow to the Wasserstein Gradient Flow
when all βk, k = 1, 2, . . . ,K, are set to 1, and when using a static Wasserstein regularization, instead
of the dynamic Wasserstein regularization derived in Proposition 9.

Langevin Dynamics and Fokker-Planck Equation: Langevin Dynamics is represented by the follow-
ing SDE.

dXt = −∇E(Xt) dt+
√
2 dWt, (16)

where E is the energy function of the equilibrium density f(x, T ) = q(x). Standard generative
model training typically focuses on the case of a normal equilibrium, i.e., E(x) = x2

2 and q(x) ∝
e−E(x). Let X0 ∼ pX and denote the density of Xt by ρ(x, t). The Langevin Dynamics also
corresponds to the Fokker-Planck Equation (FPE), which describes the evolution of ρ(x, t) towards
the equilibrium ρ(x, T ) = q(x), as follows:

∂tρ = ∇ · (ρ∇E +∇ρ), ρ(x, 0) = pX(x). (17)

In our algorithm, we focus on sampling from any distribution using its energy function, requiring
only the unnormalized density. Therefore, E(Xt) represents the potential of any target density q(x).
We initialize samples from an easy-to-sample distribution, ρ(x, 0) = π0(x), such as N(0, Id), and
aim to learn the trajectory between π0(x) and the target q(x). Therefore, sampling from q(x) boils
down to first drawing x(0) from π0(x) and then moving x(0) along the learned trajectory to finally
obtain x(T ) ∼ q(x).

JKO Scheme: The Jordan-Kinderlehrer-Otto (JKO) scheme (Jordan et al., 1998) is a time discretiza-
tion scheme for gradient flows to minimize KL(ρ∥q) under the Wasserstein-2 metric. Given a target
density q and a functional F(ρ) = KL(ρ∥q), the JKO scheme approximates the continuous gradient
flow of ρ(x, t) by solving a sequence of minimization problems. Assume there are K steps with
time stamps 0 = t0, t1, · · · , tK = T , at each time stamp tk, the scheme updates ρk at each time step
by minimizing the functional

ρk = argmin
ρ

(
F(ρ) + 1

2τ
W 2

2 (ρ, ρk−1)

)
, (18)

where W2(ρ, ρk−1) denotes the squared 2-Wasserstein distance between the probability measures
ρ and ρk. It was proven in Jordan et al. (1998) that as h = tk − tk−1 approaches 0, the solution
ρ(·, kh) provided by the JKO scheme converges to the solution of (17), at each step k.

The later works Xu et al. (2024a) have further shown that solving for the transport density ρk by
(18) is equivalent to solving for the transport map Tk by:
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Tk = arg min
T :Rd→Rd

(
KL(T#ρk−1∥q) +

1

2τ
Ex∼ρk−1

∥x− Tk(x)∥2
)

(19)

Therefore, we immediately see that the Wasserstein gradient flow based on the discretized JKO
scheme is equivalent to (6) when we set each f̃k(x) as the target distribution q(x), i.e., when all the
βk are set to 1, and when the second term in the objective (6) is relaxed to a static W2 regularization.

This suggests that when the modes of the densities are not too far apart, and it is difficult to find a
proper sequence of βk, one can simply set all f̃k(x) in our algorithm as the target density q(x), to
construct a discretized sequence of transport maps based on Wasserstein gradient descent.

C EXPERIMENTAL DETAILS

C.1 EVALUATION METRICS

To assess the performance of our model, we utilized two key metrics: Maximum Mean Discrepancy
(MMD) and Wasserstein Distance, both of which measure the divergence between the true samples
and the samples generated by the algorithms.

Maximum Mean Discrepancy (MMD)

MMD is a non-parametric metric used to quantify the difference between two distributions based on
samples. Given two sets of samples X1 ∈ Rn1×d and X2 ∈ Rn2×d, MMD computes the kernel-
based distances between these sets. Specifically, we employed a Gaussian kernel:

k(x, y) = exp{−α∥x− y∥22},

parameterized by a bandwidth α. The MMD is computed as follows:

MMD(X1, X2) =
1

n2
1

∑
i,j

k(Xi
1, X

j
1) +

1

n2
2

∑
i,j

k(Xi
2, X

j
2)−

2

n1n2

∑
i,j

k(Xi
1, X

j
2),

where k(·, ·) represents the Gaussian kernel. In our experiments, we set α = 1/γ2 and γ =
0.1 ·median dist, where median dist denotes the median of the pairwise distances between the two
datasets.

Wasserstein Distance

In addition to MMD, we used the Wasserstein distance, which measures the cost of transporting
mass between distributions. Given two point sets X ∈ Rd and Y ∈ Rd, we compute the pairwise
Euclidean distance between the points. The Wasserstein distance is then computed using the optimal
transport plan via the linear sum assignment method (from scipy.optimize package):

W (X,Y ) =
1

n

n∑
i=1

∥Xr(i) − Yc(i)∥2,

where r(i) and c(i) are the optimal row and column assignments determined through linear sum
assignment.

In all experiments, we sample 10,000 points from each model and generate 10,000 true samples
from the GMM to calculate and report both MMD and Wasserstein distance. Note that the smaller
the two metrics mentioned above, the better the sampling performance.

C.2 HUTCHINSON TRACE ESTIMATOR

The objective functions in (10) and (11) involve the calculation of ∇ · vk(x, t), i.e., the divergence
of the velocity field represented by a neural network. This may be computed by brute force using
reverse-mode automatic differentiation, which is much slower and less stable in high dimensions.
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We can express ∇ · vk(x, t) = Eϵ∼N(0,Id)

[
ϵTJv(x)ϵ

]
, where Jv(x) is the Jacobian of vk(x, t) at

x. Given a fixed ϵ, we have Jv(x)ϵ = limσ→0
vk(x+σϵ)−vk(x)

σ , which is the directional derivative
of vk along the direction ϵ. Thus, for a sufficiently small σ > 0, we can propose the following
estimator (Hutchinson, 1989; Xu et al., 2024a):

∇ · vk(x, t) ≈ Eϵ∼N(0,Id)

[
ϵT

vk(x+ σϵ, t)− vk(x, t)

σ

]
. (20)

This approximation becomes exact as σ → 0. In our experiments, we set σ = 0.02/
√
d.

C.3 OTHER ANNEALING FLOW SETTINGS

Time stamps and numerical integration

By selecting K values of β, we divide the original time scale [0, 1] of the Continuous Normalizing
Flow (2) and (3) into K intervals: [tk−1, tk] for k = 1, 2, . . . ,K. Notice that the learning of each
velocity field vk depends only on the samples from the (k − 1)-th block, not on the specific time
stamp. Therefore, we can re-scale each block’s time interval to [0, 1], knowing that using the time
stamps [(k − 1)h, kh] yields the same results as using [0, 1] for the neural network vk(x, t). For
example, the neural network will learn vk(x, 0) = vk(x, (k − 1)h) and vk(x, 1) = vk(x, kh),
regardless of the time stamps.

Recall that we relaxed the shortest transport map path into a dynamic W2 regularization loss via
Proposition 2. This requires calculating intermediate points x(tk−1,s), where s = 0, 1, . . . , S. We
set S = 3, evenly spacing the points on [tk−1, tk], resulting in the path points x(tk−1), x(tk−1 +
hk/3), x(tk−1 + 2hk/3), x(tk). To compute each x(tk−1,s), we integrate the velocity field vk
between tk−1 and tk−1,s, using the Runge-Kutta method for numerical integration. Additionally,
for each x(tk−1,s), we calculate the velocity field at an intermediate time step between tk−1,s−1 and
tk−1,s to enable accurate numerical integration. Specifically, to calculate x(t+h) based on x(t) and
an intermediate time stamp t+ h

2 :

x(t+ h) = x(t) +
h

6
(k1 + 2k2 + 2k3 + k4) ,

k1 = v(x(t), t), k2 = v

(
x(t) +

h

2
k1, t+

h

2

)
,

k3 = v

(
x(t) +

h

2
k2, t+

h

2

)
, k4 = v (x(t) + hk3, t+ h)

Here, h is the step size, and v(x, t) represents the velocity field.

The choice of βk

In the experiments on Gaussian Mixture Models (GMM) and Exp-Weighted Gaussians with various dimensions
and radii, we set the number of intermediate βk values to 8, equally spaced such that β0 = 0, β1 = 1/8,
β2 = 2/8, . . . , β8 = 1. We chose the easy-to-sample distribution π0(x) as N(0, Id). Finally, we added 2
refinement blocks. The intermediate distributions are defined as:

f̃k(x) = π0(x)
1−βk q̃(x)βk .

In the experiment on the Truncated Normal Distribution, we did not select βk in the same manner as for
the GMM and Exp-Weighted Gaussian distributions. Instead, following the same Annealing philosophy, we
construct a gradually transforming bridge from π0(x) to q̃(x) = 1|x|≥cN(0, Id) by setting each intermediate
density as:

f̃k(x) = 1∥x∥≥c/(k+1)N(0, Id).

This choice also demonstrates that our Annealing Flow is highly flexible and capable of handling a wide range
of challenging distributions.

In the experiment on funnel distributions, we set all βk = 1. Therefore, as discussed in Appendix B, the
algorithm becomes equivalent to a Wasserstein gradient descent problem. We also set the number of blocks to
8, consistent with the other experiments. This indicates that when the densities are largely concentrated in one
region, one can simply set βk to 1 and use a few blocks to find the optimal transport path based on Wasserstein
gradient descent.
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The objective

During the experiments, we found that using the Taylor approximation (as described in Proposition 3, with
a slight modification such that the expansion is around x(tk), allowing the loss to include the velocity field
term): Ẽk(xk−1) − Ẽk(xk) = (−hk)∇E(xk) · vk, and replacing the energy function Ẽk(xk) generally led
to better performance. In our experiments on the GMM, Funnel distribution, and Exp-weighted Gaussian, we
consistently used this form. For the experiments on the Truncated Normal and Bayesian Logistic Regression,
the original Ẽk(xk) was used.

Neural networks and selection of other hyperparameters

The neural network structure in our experiments is consistently set with hidden layers of size 32-32-32. During
implementation, we observed that when d ≤ 5, even a neural network with a single hidden layer of size 32 can
perform well for sampling. However, for consistency across all experiments, we uniformly set the structure to
32-32-32.

We sample 100,000 data points from N(0, Id) for training, with a batch size of 1,000. The Adam optimizer is
used with a learning rate of 0.0001, and the maximum number of iterations for each block vk is set to 1,000.
An additional two blocks are added for refinement after βK = 1.

Different numbers of test samples are used for reporting the experimental results: 5,000 points are sampled and
plotted for the experiment on Gaussian Mixture Models, 5,000 points for the experiment on Truncated Normal
Distributions, 10,000 points for the experiment on Funnel Distributions, and 10,000 points for the experiment
on Exp-Weighted Gaussian with 1,024 modes in 10D space.

C.4 BAYESIAN LOGISTIC REGRESSION

We use a hierarchical Bayesian structure for logistic regression across a range of datasets provided by LIBSVM.
The detailed setting of the Bayesian Logistic Regression is as follows.

We adopt the same Bayesian logistic regression setting as described in Liu & Wang (2016), where a hier-
archical structure is assigned to the model parameters. The weights β follow a Gaussian prior, p0(β|α) =
N(β; 0, α−1), and α follows a Gamma prior, p0(α) = Gamma(α; 1, 0.01). The datasets used are binary,
where xi has a varying number of features, and yi ∈ {+1,−1} across different datasets. Sampling is per-
formed from the posterior distribution:

p(β, α|D) ∝ Gamma(α; 1, 0.01) ·
D∏

d=1

N(βd; 0, α
−1) ·

n∏
i=1

1

1 + exp(−yiβTxi)
,

We set βk = 1 and use 8 blocks to train the Annealing Flow.

During testing, we use all algorithms to sample 1,000 particles of β and α jointly, and use {β(i)}1000i=1 to con-
struct 1,000 classifiers. The mean accuracy and standard deviation are then reported in Table 2. Additionally,
the average log posterior in Table 2 is reported as:

1

|Dtest|
∑

x,y∈Dtest

log
1

|C|
∑
θ∈C

p(y|x, θ).

C.5 IMPORTANCE FLOW

We report the results of the importance sampler (discussed in Section 5) for estimating Ex∼N(0,I)

[
1∥x∥≥c

]
with varying c and dimensions, based on our Annealing Flow. To estimate Ex∼N(0,I)

[
1∥x∥≥c

]
, we know that

the theoretically optimal proposal distribution which can achieve 0 variance is q̃∗(x) = 1∥x∥≥cN(0, I). Then
the estimator becomes:

EX∼π0(x) [h(X)] = EX∼q∗(x)

[
π0(x)

q∗(x)
· h(x)

]
≈ 1

n

n∑
i=1

π0(xi)

q∗(xi)
· h(xi), xi ∼ q∗(x),

where π0(x) = N(0, Id), h(x) = 1∥x∥≥c and q∗(x) = Z · q̃∗(x).

Therefore, the Importance Flow consists of two parts: First, using Annealing Flow to sample from q̃∗(x);
second, constructing a Density Ratio Estimation (DRE) neural network using samples from {xi}ni=1 ∼ q̃∗(x)
and {yi}ni=1 ∼ N(0, Id), as discussed in Section 5.2. The estimator becomes:

1

n

n∑
i=1

DRE(xi) · h(xi).
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The Naive MC results comes from directly using {yi}ni=1 ∼ N(0, Id) to construct estimator 1
n

∑n
i=1 1∥yi∥≥c.

When c ≥ 6, the Naive MC methods consistently output 0 as the result.

In our experiment, we use a single DRE neural network to construct the density ratio between π0(x) and
q∗(x) = Z · 1∥x∥≥cN(0, I) directly. The neural network structure consists of hidden layers with sizes 64-64-
64. The size of the training data is set to 100,000, and the batch size is set to 10,000. We use 30 to 70 epochs
for different distributions, depending on the values of c and dimension d. The Adam optimizer is used, with a
learning rate of 0.0001. The test data size is set to 1,000, and all results are based on 200 estimation rounds,
each using 500 samples.

C.6 DETAILS OF OTHER ALGORITHMS

The Algorithm 2, 3, and 4 introduce the algorithmic framework of Metropolis-Hastings (MH), Hamiltonian
Monte Carlo (HMC), and Parallel Tempering (PT) compared in our experiments.

Algorithm 2 Metropolis-Hastings Algorithm
1: Initialize x0

2: for t = 1 to N do
3: Propose x∗ ∼ q(x∗|xt−1)

4: Compute acceptance ratio α = min
(
1, π(x∗)q(xt−1|x∗)

π(xt−1)q(x∗|xt−1)

)
5: Sample u ∼ Uniform(0, 1)
6: if u < α then
7: xt = x∗

8: else
9: xt = xt−1

10: end if
11: end for
12: return {xt}Nt=0

Algorithm 3 Hamiltonian Monte Carlo (HMC)
1: Initialize x0

2: for t = 1 to N do
3: Sample p ∼ N (0,M)
4: Set (x, p)← (xt−1, p)
5: for i = 1 to L do
6: p← p− ϵ

2∇U(x)

7: x← x+ ϵM−1p
8: p← p− ϵ

2∇U(x)
9: end for

10: Compute acceptance ratio α = min (1, exp(H(xt−1, pt−1)−H(x, p)))
11: Sample u ∼ Uniform(0, 1)
12: if u < α then
13: xt = x
14: else
15: xt = xt−1

16: end if
17: end for
18: return {xt}Nt=0

In our experiments, we set the proposal density as q(x′|x) = N (x; 0, Id). We use 5 replicas in Parallel
Tempering (PT), with a linear temperature progression ranging from T1 = 1.0 to Tmax = 2.0, and an exchange
interval of 100 iterations. For HMC, we set the number of leapfrog steps to 10, with a step size (ϵ) of 0.01, and
the mass matrix M is set as the identity matrix. Additionally, we use the default hyperparameters as specified
in SVGD (Liu & Wang, 2016), MIED (Li et al., 2023), and AI-Sampler (Egorov et al., 2024). In the actual
implementation, we found that the time required for SVGD to converge increases significantly with the number
of samples. Therefore, in most experiments, we sample 1000 data points at a time using SVGD, aggregate the
samples, and then generate the final plot.

D MORE RESULTS

We adopt the standard Annealing Flow framework discussed in this paper for experiments on Gaussian Mixture
Models (GMM), Truncated Normal distributions, and Exp-Weighted Gaussian distributions. For experiments
on funnel distributions, we set each f̃k(x) as the target q(x), under which the Annealing Flow objective be-
comes equivalent to the Wasserstein Gradient Flow based on the JKO scheme, as discussed in B. Please refer
to C.3 for βk selections.
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Algorithm 4 Parallel Tempering Algorithm
1: Initialize replicas {x1, x2, . . . , xnum replicas} with Gaussian noise
2: Initialize temperatures {T1, T2, . . . , Tnum replicas}
3: for i = 1 to iterations do
4: for j = 1 to num replicas do
5: Propose x∗

j ∼ q(x∗
j |xj) {Using Metropolis-Hastings step for each replica}

6: Compute acceptance ratio αj =
π(x∗

j )

π(xj)

7: Sample u ∼ Uniform(0, 1)
8: if u < αj then
9: xj = x∗

j
10: end if
11: Store xj in samples for replica j
12: end for
13: if i mod exchange interval = 0 then
14: for j = 1 to num replicas− 1 do
15: Compute energies Ej = − log(π(xj) + ϵ), Ej+1 = − log(π(xj+1) + ϵ)

16: Compute ∆ =
(

1
Tj
− 1

Tj+1

)
(Ej+1 − Ej)

17: Sample u ∼ Uniform(0, 1)
18: if u < exp(∆) then
19: Swap xj ↔ xj+1

20: end if
21: end for
22: end if
23: end for
24: return samples from all replicas

Gaussian Mixture Models (GMM)

(a) True (b) AF (c) HMC (d) PT (e) SVGD (f) MIED (g) AIS

Figure 7: Sampling methods for Gaussian Mixture Models (GMM) with 6, 8, and 10 modes distributed on
circles with radii r = 8, 10, 12.

Evaluation Metrics: We report 1) the Maximum Mean Discrepancy (MMD) and 2) the Wasserstein Distance
for the GMM experiments, as both metrics require access to true data samples. The results for these metrics are
presented in Table 4. Please refer to C.1 for more details.

Table 4: MMD and Wasserstein Distance results: ·/· represents MMD/Wasserstein. The first row
corresponds to d = {dimension} GMM-{Number of Modes}.

d = 2 GMM-8 d = 2 GMM-12 d = 3 GMM-8 d = 4 GMM-16 d = 5 GMM-32 d = 6 GMM-64
AF 2.32E-03/7.38E-01 3.01E-03/8.05E-01 5.82E-03/1.97E+00 1.25E-03/3.33E+00 1.57E-03/2.82E+00 4.31E-03/3.53E+00

HMC 7.33E-02/6.28E+00 9.06E-02/8.73E+00 9.92E-02/1.12E+01 9.76E-02/1.98E+01 2.14E-01/2.53E+01 2.15E-01/3.03E+01
PT 6.27E-02/5.71E+00 9.01E-02/7.91E+00 8.83E-02/1.07E+01 8.98E-02/1.53E+01 1.18E-01/1.83E+01 1.05E-01/2.13E+01

SVGD 9.35E-02/9.97E+00 1.85E-01/1.82E+01 9.81E-02/1.13E+01 9.63E-02/2.07E+01 1.98E-01/2.45E+01 1.32E-01/2.34E+01
MIED 2.34E-03/8.01E-01 6.28E-03/9.35E-01 8.01E-03/2.52E+00 3.88E-02/0.89E+01 9.88E-03/7.89E+00 2.03E-02/1.13E+01
AIS 2.33E-03/7.92E-01 4.02E-03/8.13E-01 7.55E-02/2.38E+00 5.26E-03/5.53E+00 6.37E-03/3.83E+00 1.87E-02/9.73E+00
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Truncated Normal Distribution

Relaxations are applied to the Truncated Normal Distribution in all experiments except for MH, HMC, and PT.
Specifically, we relax the indicator function 1∥x∥≥c to 1

1+exp(−k(∥x∥−c))
. We set k = 20 for all experiments.

AIS is designed for continuous densities, and we similarly relax the densities in SVGD and MIED, following
the approach used in AF. The resulting plots are as follows:

(a) True (b) AF (c) HMC (d) PT (e) SVGD (f) MIED

Figure 8: Sampling Methods for Truncated Normal Distributions with Radius c = 6, together with
the failure cases of SVGD and MIED.

Each algorithm draws 5,000 samples. It can be observed that MCMC-based methods, including HMC and PT,
produce many overlapping samples. This occurs because when a new proposal is rejected, the algorithms retain
the previous sample, leading to highly correlated sample sets.

Table 5: Proportion of Annealing Flow Samples Within c, Across Different Dimensions

Proportion Within c c = 4 c = 6 c = 8
D = 2 0.17% 0.18% 1.78%
D = 3 0.20% 0.23% 3.23%
D = 4 0.68% 1.48% 3.68%
D = 5 1.46% 3.37% 4.12%
D = 10 2.13% 4.68% 7.13%

(a) True (b) AF (c) MH (d) HMC (e) PT

For dimensions d > 2, visualizing the results by comparing the sample positions using a red sphere surface
becomes challenging. Therefore, we calculate the proportion of samples within radius c. A lower proportion
indicates better sampling performance. Table 5 presents these results. We also calculate the proportion of the
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surface ∥x∥ = c covered by the samples for AF, MH, HMC, and PT. In all experiments with the Truncated
Normal distribution, AF covers more than 95% of the surface area. However, when d ≥ 3 and c ≥ 6, all other
methods cover less than 70% of the surface area.

Funnel Distribution

In the main paper, we present the sampling methods for the funnel distribution with d = 5, projected onto a
3D space. To assess the sample quality, here we present the corresponding results projected onto a 2D space,
plotted alongside the density heat map.

(a) AF (b) HMC (c) PT (d) SVGD (e) MIED (f) AIS

(a) True (b) AF (c) HMC (d) PT (e) SVGD (f) MIED (g) AIS

Figure 11: Sampling Methods for Funnel Distribution with σ2 = 0.81 in Dimension d = 5, pro-
jected onto a d = 3 Space.

As seen from both figures, our AF method achieves the best sampling performance on the funnel distribution,
while other methods, such as MIED and AIS, fail to capture the full spread of the funnel’s tail. Additionally,
PT, SVGD, and AIS all fail to capture the sharp part of the funnel’s shape.

Exp-Weighted Gaussian

In the main paper, we present the sampling methods for the Exp-Weighted Gaussian distribution with 1024
modes in a 50D space, projected onto a 3D space. To better assess the sample quality, we now present the
corresponding results projected onto 2D and 1D spaces, plotted alongside the heat map and the true density,
respectively.

(a) AF (b) HMC (c) PT (d) SVGD (e) MIED (f) AIS

Figure 12: Sampling Methods for an Exp-Weighted Gaussian Distribution with 1024 modes in 10D
(Top) and 50D (Bottom), projected onto a 3D Space.
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(a) True (b) AF (c) HMC (d) PT (e) SVGD (f) MIED (g) AIS

(h) True (i) AF (j) HMC (k) PT (l) SVGD (m) MIED (n) AIS

Figure 13: Sampling Methods for an Exp-Weighted Gaussian Distribution with 1024 modes in 10D
(Top) and 50D (Bottom), projected onto a 2D Space.

(a) AF (b) HMC (c) PT (d) SVGD (e) MIED (f) AIS

Figure 14: Sampling Methods for an Exp-Weighted Gaussian Distribution with 1024 modes in 10D
(Top) and 50D (Bottom), projected onto a 1D Space.

As seen in Figures 13 and 14, AF produces balanced samples, and its 1D projection closely matches the true
density. While both SVGD and MIED captured around 800 to 900 modes, their samples across the modes are
imbalanced, as observed in the figures. We projected onto each dimension, and the results were similar.
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D.1 COMPARISONS

Table 6: Comparisons of Different Sampling Methods

Method Key Characteristics Advantages Disadvantages

Annealing Flow
(AF)

- Continuous Normalizing
Flow-based approach.
- Leverages annealing princi-
ples for sampling challenging
high-dimensional, multi-modal
distributions.
- Uses transport maps to trans-
form samples from a base
distribution to the target distri-
bution.

- Independent sampling.
- Balanced mode exploration.
- Handles multi-modal distribu-
tions effectively.
- Once trained, the sampling
process is very fast
- Scales linearly with sample
size and dimensionality.

- Requires pre-training, which
can be computationally expen-
sive.

MCMC

- Metropolis-Hastings, Parallel
Tempering, Hamiltonian Monte
Carlo (HMC) variants.
- Samples sequentially from the
target distribution, with each
sample depending on the previ-
ous one.

- Flexible, general-purpose.
- Doesn’t require pre-training.

- Slow mixing time.
- Struggles with multi-modal
distributions.
- Sample correlation reduces ef-
fective sample size (ESS).
- Imbalanced mode exploration.

Particle-Based
Optimization

(SVGD, MIED)

- Relies on particle dynamics
and kernel methods to sample
from the target distribution.

- No burn-in period.
- Less sample correlation than
MCMC.
- Encourages global search.

- Kernel computations scale
polynomially with sample size.
- Sensitive to kernel hyperpa-
rameters.

NN-Assisted
MCMC

- Uses neural networks to accel-
erate or guide MCMC methods.
- Combines the expressive
power of neural networks with
MCMC.

- Can speed up the explorations
of MCMC methods.
- Leverages NN for improved
sampling efficiency.

- Inherits some limitations of
MCMC, such as slow mixing,
correlated samples, and mode
imbalance.

Score-based
Diffusion

- Learns score functions to iter-
atively perturb samples towards
the target distribution.

- Strong theoretical guarantees
for sampling specific distribu-
tions.

- Limited generalization to ar-
bitrary distributions, as score
functions are analytically de-
rived.
- Challenging in complex, high-
dimensional distributions

Annealing Flow (AF) requires pre-training, typically taking 10-20 minutes for tasks with dimensions < 10,
and around 30 minutes for tasks around dimension 50. For 50D experiments, training a single vk with a neural
network structure of 32-32-32 and 1000 gradient steps takes approximately 2–3 minutes. Once trained, AF
samplers are very efficient: generating 10,000 samples in just 1.5 seconds. These pre-trained samplers can be
reused at any time, offering significant speed advantages. In contrast, MCMC methods, such as Metropolis-
Hastings or Hamiltonian Monte Carlo, require about 1 minute to sample 10,000 points, and their performance
deteriorates in high-dimensional, multi-modal settings. Moreover, particle-based methods, like SVGD, struggle
significantly when generating more than 3,000 samples, requiring about 20 minutes for that many samples.
Therefore, we believe that users can take advantage of AF’s offline training, as it allows the samplers to be
trained once and then efficiently reused for sampling whenever needed.

D.2 IMPORTANCE FLOW

The importance flow discussed and experimented with in this paper requires a given form of π0(x), and
thus, a given form of q̃∗(x) = π0(x) · |h(x)| for estimating EX∼π0(x) [h(X)]. In our experimental set-
tings, q̃∗(x) = 1∥x∥≥cN(0, Id) can be regarded as the Least-Favorable-Distribution (LFD). We conducted a
parametric experiment for the case where q̃∗(x) has the given analytical form.

However, we believe future research may extend this approach to a distribution-free model. That is, given a
dataset without prior knowledge of its distribution, one could attempt to learn an importance flow for sam-
pling from its Least-Favorable Distribution (LFD) while minimizing the variance. For example, in the case of
sampling from the LFD and obtaining a low-variance IS estimator for Px∼π(x)(∥x∥ ≥ c), one may use the
following distribution-free loss for learning the flow:

min
θ

1

n

n∑
i=1

[
1{T (xi; θ) ≤ c} · ∥T (xi; θ)− c∥2

]
+ γ

∫ 1

0

∥v(x(t), t; θ)∥2, (21)
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where the first term of the loss pushes the dataset {xi}ni=1 towards the Least-Favorable tail region, while the
second term ensures a smooth and cost-optimal transport map. Note that the above loss assumes no prior
knowledge of the dataset distribution π(x) or the target density q(x).

Xu et al. (2024b) has also explored this to some extent by designing a distributionally robust optimization
problem to learn a flow model that pushes samples toward the LFD Q∗, which is unknown and learned by the
model through a risk function R(Q∗, ϕ). Such framework has significant applications in adversarial attacks,
robust hypothesis testing, and differential privacy. Additionally, the recent paper by Ribera Borrell et al. (2024)
introduces a dynamic control loss for training a neural network to approximate the importance sampling control.
We believe that by designing an optimal control loss in line with the approaches of these two papers, one can
develop a distribution-free Importance Flow for sampling from the LFD of a dataset while minimizing the
variance of the adversarial loss, which can generate a greater impact on the fields of adversarial attacks and
differential privacy.
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